640 research outputs found

    Numerical investigation of tearing modes amplitude oscillations

    Get PDF
    A recently observed phenomenon involving magnetic islands in high-density pulses in the Frascati Tokamak Upgrade is investigated using numerical simulations in slab geometry. This phenomenon was given the name “limit cycles” because of the figure drawn by the trajectory of the system in the amplitude/frequency plane of magnetic islands. In this regime of propagation, the magnetic islands show a quasi-periodic modulation of their amplitude and rotation frequency. The Fourier analysis of the experimental signals shows a large harmonic content, which we ascribed to a significant island deformation in the cycle phase. We performed a series of numerical simulations by integrating a four-field system of equations through a finite difference code to check this hypothesis. The results of the simulations show that a large density gradient causes a significant island deformation in the nonlinear regime, in agreement with our hypothesis. This deformation is caused by the diamagnetic velocity shear resulting from the nonlinear flattening of the density profile inside the island separatrix

    Experimental determination of electron and hole mean drift distance: Application to chemical vapor deposition diamond

    Get PDF
    A study was performed on the experimental determination of electron and hole mean drift distance in chemical vapor deposition polycrystalline diamond. Air was used as an absorbing layer in order to change the energy of the impinging α particles. The results showed that the pumping process was much more effective on hole conduction

    Evidence of a thermo-diffusion pinch on particle transport in FTU discharges close to density limit

    Get PDF
    Abstract In FTU, the density profile in the presence of large MARFE becomes more and more peaked with increasing density, forming strong density gradients close to the radial region affected by the MARFE. The temperature at the edge drops to few eV, driving a drop of the whole profile. The estimated particle source cannot justify the change of the density gradient, which instead is well-explained by a change of the pinch. A thermo-diffusion term well-describes the pinch evolution and the experimental behavior of the density at those radii where temperature measurements are reliable

    dynamic and frequency behaviour of the marfe instability on ftu

    Get PDF
    The Frascati Tokamak Upgrade (FTU) device can operate at high electron density regimes of the order of 1020m−3, where the MARFE instability is present at various plasma current and magnetic field values. When the MARFE is well developed and oscillating, its movement causes continuous density fluctuation, contaminating the integral density measurements. The amplitude and frequency of these density fluctuations are well revealed by the high resolution interferometer available on FTU, the dependence of the frequency versus basic plasma parameters is investigated in this paper.A specific experimental session on FTU, including some discharges with reversed toroidal magnetic field, and pushing the plasma column towards the internal or external side of the vacuum chamber, respectively, has shown that, when the plasma column is distant from the toroidal limiter, the MARFE is stable and does not oscillate around the mid plane. For these last cases the MARFE localization with respect to the ion drift direction, which can influence the stable and unstable positions, is also discussed. Keywords: Tokamak, MARFE, Greenwald limit, Single particle motion, Ion drift, Plasma radiatio

    Gamma-ray blazars: the view from AGILE

    Full text link
    During the first 3 years of operation the Gamma-Ray Imaging Detector onboard the AGILE satellite detected several blazars in a high gamma-ray activity: 3C 279, 3C 454.3, PKS 1510-089, S5 0716+714, 3C 273, W Comae, Mrk 421, PKS 0537-441 and 4C +21.35. Thanks to the rapid dissemination of our alerts, we were able to obtain multiwavelength data from other observatories such as Spitzer, Swift, RXTE, Suzaku, INTEGRAL, MAGIC, VERITAS, and ARGO as well as radio-to-optical coverage by means of the GASP Project of the WEBT and the REM Telescope. This large multifrequency coverage gave us the opportunity to study the variability correlations between the emission at different frequencies and to obtain simultaneous spectral energy distributions of these sources from radio to gamma-ray energy bands, investigating the different mechanisms responsible for their emission and uncovering in some cases a more complex behaviour with respect to the standard models. We present a review of the most interesting AGILE results on these gamma-ray blazars and their multifrequency data.Comment: 25 pages, 10 figures, accepted for publication on Advances in Space Research. Talk presented at the 38th COSPAR Scientific Assembly (Bremen, Germany; July 18-25, 2010
    corecore